import sagemaker import boto3 from sagemaker import get_execution_role from sagemaker.xgboost.estimator import XGBoost boto_session = boto3.Session(profile_name='bonitoo', region_name='eu-central-1') # local: sagemaker_session = sagemaker.LocalSession(boto_session=boto_session) sagemaker_session = sagemaker.Session(boto_session=boto_session) role = 'Bonitoo_SageMaker_Execution' train_input = 's3://customers-bonitoo-cachettl/sagemaker/data/export.csv' tf = XGBoost( entry_point='train_model.py', source_dir='./src', train_instance_type='ml.c5.xlarge', train_instance_count=1, role=role, sagemaker_session=sagemaker_session, framework_version='0.90-1', py_version='py3', hyperparameters={ 'bonitoo_price_pos_abs': 1000, 'bonitoo_price_neg_abs': 200, 'bonitoo_price_pos_perc': 0.05, 'bonitoo_price_neg_perc': 0.05, 'num_round': 10, 'max_depth': 15, 'eta': 0.5, 'num_class': 8, 'objective': 'multi:softprob', 'eval_metric': 'mlogloss' }) tf.fit({'training': train_input})