Bonitoo cache ttl estimation
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

33 lines
984 B

import sagemaker
import boto3
from sagemaker import get_execution_role
from sagemaker.xgboost.estimator import XGBoost
boto_session = boto3.Session(profile_name='bonitoo', region_name='eu-central-1')
# local: sagemaker_session = sagemaker.LocalSession(boto_session=boto_session)
sagemaker_session = sagemaker.Session(boto_session=boto_session)
role = 'Bonitoo_SageMaker_Execution'
train_input = 's3://customers-bonitoo-cachettl/sagemaker/data/export-reduced.csv'
tf = XGBoost(
entry_point='train_model.py',
source_dir='./src',
train_instance_type='ml.c5.xlarge',
train_instance_count=1,
role=role,
sagemaker_session=sagemaker_session,
framework_version='0.90-1',
py_version='py3',
hyperparameters={
'bonitoo_price_limit': 1000,
'num_round': 15,
'max_depth': 15,
'eta': 0.5,
'num_class': 8,
'objective': 'multi:softmax',
'eval_metric': 'mlogloss'
})
tf.fit({'training': train_input})