# -*- coding: utf-8 -*- """ Copyright 2019 Petr Masopust, Aprar s.r.o. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Adopted code from https://github.com/rainofmine/Face_Attention_Network """ import torch import torch.nn as nn import numpy as np def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x # TODO hack for old model self.conv1.padding_mode = 'zeros' self.conv2.padding_mode = 'zeros' self.conv3.padding_mode = 'zeros' if self.downsample is not None: self.downsample[0].padding_mode = 'zeros' out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SELayer(nn.Module): def __init__(self, channel, reduction=16): super(SELayer, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y class BottleneckSE(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16): super(BottleneckSE, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se = SELayer(planes * 4, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class CBAMModule(nn.Module): def __init__(self, channels, reduction): super(CBAMModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid_channel = nn.Sigmoid() self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3) self.sigmoid_spatial = nn.Sigmoid() def forward(self, x): module_input = x avg = self.avg_pool(x) mx = self.max_pool(x) avg = self.fc1(avg) mx = self.fc1(mx) avg = self.relu(avg) mx = self.relu(mx) avg = self.fc2(avg) mx = self.fc2(mx) x = avg + mx x = self.sigmoid_channel(x) x = module_input * x module_input = x avg = torch.mean(x, 1, True) mx, _ = torch.max(x, 1, True) x = torch.cat((avg, mx), 1) x = self.conv_after_concat(x) x = self.sigmoid_spatial(x) x = module_input * x return x class BottleneckCBAM(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16): super(BottleneckCBAM, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se = CBAMModule(planes * 4, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class BBoxTransform(nn.Module): def __init__(self, mean=None, std=None, is_cuda=True): super(BBoxTransform, self).__init__() if mean is None: self.mean = torch.from_numpy(np.array([0, 0, 0, 0]).astype(np.float32)) if is_cuda: self.mean = self.mean.cuda() else: self.mean = mean if std is None: self.std = torch.from_numpy(np.array([0.1, 0.1, 0.2, 0.2]).astype(np.float32)) if is_cuda: self.std = self.std.cuda() else: self.std = std def forward(self, boxes, deltas): widths = boxes[:, :, 2] - boxes[:, :, 0] heights = boxes[:, :, 3] - boxes[:, :, 1] ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights dx = deltas[:, :, 0] * self.std[0] + self.mean[0] dy = deltas[:, :, 1] * self.std[1] + self.mean[1] dw = deltas[:, :, 2] * self.std[2] + self.mean[2] dh = deltas[:, :, 3] * self.std[3] + self.mean[3] pred_ctr_x = ctr_x + dx * widths pred_ctr_y = ctr_y + dy * heights pred_w = torch.exp(dw) * widths pred_h = torch.exp(dh) * heights pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack([pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2], dim=2) return pred_boxes class ClipBoxes(nn.Module): def __init__(self): super(ClipBoxes, self).__init__() def forward(self, boxes, img): batch_size, num_channels, height, width = img.shape boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width) boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height) return boxes