# -*- coding: utf-8 -*- """ Copyright 2019 Petr Masopust, Aprar s.r.o. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Adopted code from https://github.com/rainofmine/Face_Attention_Network """ import numpy as np import torch import torch.nn as nn class Anchors(nn.Module): def __init__(self, pyramid_levels=None, strides=None, sizes=None, ratios=None, scales=None, is_cuda=True): super(Anchors, self).__init__() self.is_cuda = is_cuda if pyramid_levels is None: self.pyramid_levels = [3, 4, 5, 6, 7] if strides is None: self.strides = [2 ** x for x in self.pyramid_levels] if sizes is None: self.sizes = [2 ** (x + 2) for x in self.pyramid_levels] if ratios is None: # self.ratios = np.array([1., 1.5, 2., 2.5, 3.]) self.ratios = np.array([0.5, 1., 2.]) if scales is None: self.scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]) def forward(self, image): image_shape = image.shape[2:] image_shape = np.array(image_shape) image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in self.pyramid_levels] # compute anchors over all pyramid levels all_anchors = np.zeros((0, 4)).astype(np.float32) for idx, p in enumerate(self.pyramid_levels): anchors = generate_anchors(base_size=self.sizes[idx], ratios=self.ratios, scales=self.scales) shifted_anchors = shift(image_shapes[idx], self.strides[idx], anchors) all_anchors = np.append(all_anchors, shifted_anchors, axis=0) all_anchors = np.expand_dims(all_anchors, axis=0) all_anchors = torch.from_numpy(all_anchors.astype(np.float32)) if self.is_cuda: all_anchors = all_anchors.cuda() return all_anchors def generate_anchors(base_size=16, ratios=None, scales=None): """ Generate anchor (reference) windows by enumerating aspect ratios X scales w.r.t. a reference window. """ if ratios is None: ratios = np.array([0.5, 1, 2]) if scales is None: scales = np.array([2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]) num_anchors = len(ratios) * len(scales) # initialize output anchors anchors = np.zeros((num_anchors, 4)) # scale base_size anchors[:, 2:] = base_size * np.tile(scales, (2, len(ratios))).T # compute areas of anchors areas = anchors[:, 2] * anchors[:, 3] # correct for ratios anchors[:, 2] = np.sqrt(areas / np.repeat(ratios, len(scales))) anchors[:, 3] = anchors[:, 2] * np.repeat(ratios, len(scales)) # transform from (x_ctr, y_ctr, w, h) -> (x1, y1, x2, y2) anchors[:, 0::2] -= np.tile(anchors[:, 2] * 0.5, (2, 1)).T anchors[:, 1::2] -= np.tile(anchors[:, 3] * 0.5, (2, 1)).T return anchors def compute_shape(image_shape, pyramid_levels): """Compute shapes based on pyramid levels. :param image_shape: :param pyramid_levels: :return: """ image_shape = np.array(image_shape[:2]) image_shapes = [(image_shape + 2 ** x - 1) // (2 ** x) for x in pyramid_levels] return image_shapes def anchors_for_shape( image_shape, pyramid_levels=None, ratios=None, scales=None, strides=None, sizes=None, ): image_shapes = compute_shape(image_shape, pyramid_levels) # compute anchors over all pyramid levels all_anchors = np.zeros((0, 4)) for idx, p in enumerate(pyramid_levels): anchors = generate_anchors(base_size=sizes[idx], ratios=ratios, scales=scales) shifted_anchors = shift(image_shapes[idx], strides[idx], anchors) all_anchors = np.append(all_anchors, shifted_anchors, axis=0) return all_anchors def shift(shape, stride, anchors): shift_x = (np.arange(0, shape[1]) + 0.5) * stride shift_y = (np.arange(0, shape[0]) + 0.5) * stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack(( shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel() )).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = anchors.shape[0] K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) return all_anchors