# -*- coding: utf-8 -*- """ Copyright 2019 Petr Masopust, Aprar s.r.o. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Adopted code from https://github.com/rainofmine/Face_Attention_Network """ import numpy as np import torch import argparse import json from PIL import Image, ImageDraw from identification.dataloader import Normalizer, Resizer from torchvision import transforms def fan_detect(model, img_data, threshold=0.9, max_detections=100, is_cuda=True): input_data = {'img': img_data, 'annot': np.zeros((0, 5)), 'scale': 1} transform = transforms.Compose([Resizer(), Normalizer()]) transformed = transform(input_data) model.eval() with torch.no_grad(): img_data = transformed['img'].permute(2, 0, 1).float().unsqueeze(dim=0) if is_cuda: img_data = img_data.cuda() scores, labels, boxes = model(img_data) if scores is None: return np.empty((0, 0)), np.empty((0, 0)) scores = scores.cpu().numpy() scale = transformed['scale'] boxes = boxes.cpu().numpy() / scale indices = np.where(scores > threshold)[0] scores = scores[indices] scores_sort = np.argsort(-scores)[:max_detections] image_boxes = boxes[indices[scores_sort], :] return image_boxes, scores[:max_detections] def img_rectangles(img, output_path, boxes=None): if boxes is not None: draw = ImageDraw.Draw(img) for arr in boxes: draw.rectangle(((arr[0], arr[1]), (arr[2], arr[3])), outline="black", width=1) img.save(output_path) def load_model(model_path, is_cuda=True): # load possible cuda model as cpu model = torch.load(model_path, map_location=lambda storage, location: storage) if is_cuda: model = model.cuda() model.anchors.is_cuda = is_cuda return model def load_image(filepath): img = Image.open(filepath) img = img.convert(mode="RGB") return img def main(args=None): parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.') parser.add_argument('--model', help='Path to model') parser.add_argument('--image', help='Path to image') parser.add_argument('--rect', help='Output image with rectangles') parser.add_argument('--threshold', help='Probability threshold (default 0.9)', type=float, default=0.9) parser.add_argument('--force-cpu', help='Force CPU for detection (default false)', dest='force_cpu', default=False, action='store_true') parser = parser.parse_args(args) is_cuda = torch.cuda.is_available() and not parser.force_cpu model = load_model(parser.model, is_cuda=is_cuda) img = load_image(parser.image) boxes, scores = fan_detect(model, img, threshold=parser.threshold, is_cuda=is_cuda) print(json.dumps({'boxes': boxes.tolist(), 'scores': scores})) if parser.rect: img = load_image(parser.image) img_rectangles(img, parser.rect, boxes) if __name__ == '__main__': main()