1
0
Fork 0
Face identification and recognition scalable server with multiple face directories. https://github.com/ehp/faceserver
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

87 lines
2.8 KiB

import numpy as np
import torch
import argparse
import json
from PIL import Image, ImageDraw
from identification.dataloader import Normalizer, Resizer
from torchvision import transforms
def fan_detect(model, img_data, threshold=0.9, max_detections=100, is_cuda=True):
input_data = {'img': img_data, 'annot': np.zeros((0, 5)), 'scale': 1}
transform = transforms.Compose([Resizer(), Normalizer()])
transformed = transform(input_data)
model.eval()
with torch.no_grad():
img_data = transformed['img'].permute(2, 0, 1).float().unsqueeze(dim=0)
if is_cuda:
img_data = img_data.cuda()
scores, labels, boxes = model(img_data)
if scores is None:
return np.empty((0,0)), np.empty((0,0))
scores = scores.cpu().numpy()
scale = transformed['scale']
boxes = boxes.cpu().numpy() / scale
indices = np.where(scores > threshold)[0]
scores = scores[indices]
scores_sort = np.argsort(-scores)[:max_detections]
image_boxes = boxes[indices[scores_sort], :]
return image_boxes, scores[:max_detections]
def img_rectangles(img, output_path, boxes=None):
if boxes is not None:
draw = ImageDraw.Draw(img)
for arr in boxes:
draw.rectangle(((arr[0], arr[1]), (arr[2], arr[3])), outline="black", width=1)
img.save(output_path)
def load_model(model_path, is_cuda=True):
# load possible cuda model as cpu
model = torch.load(model_path, map_location=lambda storage, location: storage)
if is_cuda:
model = model.cuda()
model.anchors.is_cuda=is_cuda
return model
def load_image(filepath):
img = Image.open(filepath)
img = img.convert(mode="RGB")
return img
def main(args=None):
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
parser.add_argument('--model', help='Path to model')
parser.add_argument('--image', help='Path to image')
parser.add_argument('--rect', help='Output image with rectangles')
parser.add_argument('--threshold', help='Probability threshold (default 0.9)', type=float, default=0.9)
parser.add_argument('--force-cpu', help='Force CPU for detection (default false)', dest='force_cpu',
default=False, action='store_true')
parser = parser.parse_args(args)
is_cuda = torch.cuda.is_available() and not parser.force_cpu
model = load_model(parser.model, is_cuda=is_cuda)
img = load_image(parser.image)
boxes, scores = fan_detect(model, img, threshold=parser.threshold, is_cuda=is_cuda)
print(json.dumps({'boxes': boxes.tolist(), 'scores': scores}))
if parser.rect:
img = load_image(parser.image)
img_rectangles(img, parser.rect, boxes)
if __name__ == '__main__':
main()