1
0
Fork 0
Face identification and recognition scalable server with multiple face directories. https://github.com/ehp/faceserver
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

125 lines
4.3 KiB

# -*- coding: utf-8 -*-
"""
Copyright 2019 Petr Masopust, Aprar s.r.o.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Adopted code from https://github.com/ronghuaiyang/arcface-pytorch
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
class AngleLinear(nn.Module):
def __init__(self, in_features, out_features):
super(AngleLinear, self).__init__()
self.W = Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.W)
def forward(self, input):
x = F.normalize(input)
W = F.normalize(self.W)
return F.linear(x, W)
class AdaCos(nn.Module):
def __init__(self, num_classes, m=0.50, is_cuda=True):
super(AdaCos, self).__init__()
self.n_classes = num_classes
self.s = math.sqrt(2) * math.log(num_classes - 1)
self.base_s = self.s
self.m = m
self.criterion = nn.CrossEntropyLoss()
if is_cuda:
self.criterion = self.criterion.cuda()
def forward(self, input, label):
# changed to fixed adacos - faster and more stable
# theta = torch.acos(torch.clamp(input, -1.0 + 1e-7, 1.0 - 1e-7))
# one_hot = torch.zeros_like(input)
# one_hot.scatter_(1, label.view(-1, 1).long(), 1)
# with torch.no_grad():
# B_avg = torch.where(one_hot < 1, torch.exp(self.s * input), torch.zeros_like(input))
# B_avg = torch.sum(B_avg) / input.size(0)
# theta_med = torch.median(theta)
# self.s = torch.log(B_avg) / torch.cos(torch.min(math.pi/4 * torch.ones_like(theta_med), theta_med))
# # TODO why converge to infinity ?
# self.s = torch.clamp(self.s, self.base_s / 2, self.base_s * 2)
# print(self.s)
output = self.s * input
return self.criterion(output, label)
class ArcFace(nn.Module):
def __init__(self, s=30.0, m=0.50, is_cuda=True):
super(ArcFace, self).__init__()
self.s = s
self.m = m
self.criterion = nn.CrossEntropyLoss()
if is_cuda:
self.criterion = self.criterion.cuda()
def forward(self, input, label):
theta = torch.acos(torch.clamp(input, -1.0 + 1e-7, 1.0 - 1e-7))
target_logits = torch.cos(theta + self.m)
one_hot = torch.zeros_like(input)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = input * (1 - one_hot) + target_logits * one_hot
output *= self.s
return self.criterion(output, label)
class SphereFace(nn.Module):
def __init__(self, s=30.0, m=1.35, is_cuda=True):
super(SphereFace, self).__init__()
self.s = s
self.m = m
self.criterion = nn.CrossEntropyLoss()
if is_cuda:
self.criterion = self.criterion.cuda()
def forward(self, input, label):
theta = torch.acos(torch.clamp(input, -1.0 + 1e-7, 1.0 - 1e-7))
target_logits = torch.cos(self.m * theta)
one_hot = torch.zeros_like(input)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = input * (1 - one_hot) + target_logits * one_hot
output *= self.s
return self.criterion(output, label)
class CosFace(nn.Module):
def __init__(self, s=30.0, m=0.35, is_cuda=True):
super(CosFace, self).__init__()
self.s = s
self.m = m
self.criterion = nn.CrossEntropyLoss()
if is_cuda:
self.criterion = self.criterion.cuda()
def forward(self, input, label):
target_logits = input - self.m
one_hot = torch.zeros_like(input)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = input * (1 - one_hot) + target_logits * one_hot
output *= self.s
return self.criterion(output, label)