1
0
Fork 0
Face identification and recognition scalable server with multiple face directories. https://github.com/ehp/faceserver
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

170 lines
5.4 KiB

# -*- coding: utf-8 -*-
"""
Copyright 2019 Petr Masopust, Aprar s.r.o.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Adopted code from https://github.com/ronghuaiyang/arcface-pytorch
Created on 18-5-21 下午5:26
@author: ronghuaiyang
"""
import torchvision.models as models
from torch import nn
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = models.resnet18(num_classes=512, **kwargs)
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = models.resnet34(num_classes=512, **kwargs)
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = models.resnet50(num_classes=512, **kwargs)
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = models.resnet101(num_classes=512, **kwargs)
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = models.resnet152(num_classes=512, **kwargs)
return model
def sphere20():
return sphere20a()
def get_net_by_depth(depth):
if depth == 18:
model = resnet18()
elif depth == 20:
model = sphere20()
elif depth == 34:
model = resnet34()
elif depth == 50:
model = resnet50()
elif depth == 101:
model = resnet101()
elif depth == 152:
model = resnet152()
else:
raise ValueError('Unsupported model depth %d, must be one of 18, 34, 50, 101, 152' % depth)
return model
class sphere20a(nn.Module):
def __init__(self):
super(sphere20a, self).__init__()
# input = B*3*112*96
self.conv1_1 = nn.Conv2d(3, 64, 3, 2, 1) # =>B*64*56*48
self.relu1_1 = nn.PReLU(64)
self.conv1_2 = nn.Conv2d(64, 64, 3, 1, 1)
self.relu1_2 = nn.PReLU(64)
self.conv1_3 = nn.Conv2d(64, 64, 3, 1, 1)
self.relu1_3 = nn.PReLU(64)
self.conv2_1 = nn.Conv2d(64, 128, 3, 2, 1) # =>B*128*28*24
self.relu2_1 = nn.PReLU(128)
self.conv2_2 = nn.Conv2d(128, 128, 3, 1, 1)
self.relu2_2 = nn.PReLU(128)
self.conv2_3 = nn.Conv2d(128, 128, 3, 1, 1)
self.relu2_3 = nn.PReLU(128)
self.conv2_4 = nn.Conv2d(128, 128, 3, 1, 1) # =>B*128*28*24
self.relu2_4 = nn.PReLU(128)
self.conv2_5 = nn.Conv2d(128, 128, 3, 1, 1)
self.relu2_5 = nn.PReLU(128)
self.conv3_1 = nn.Conv2d(128, 256, 3, 2, 1) # =>B*256*14*12
self.relu3_1 = nn.PReLU(256)
self.conv3_2 = nn.Conv2d(256, 256, 3, 1, 1)
self.relu3_2 = nn.PReLU(256)
self.conv3_3 = nn.Conv2d(256, 256, 3, 1, 1)
self.relu3_3 = nn.PReLU(256)
self.conv3_4 = nn.Conv2d(256, 256, 3, 1, 1) # =>B*256*14*12
self.relu3_4 = nn.PReLU(256)
self.conv3_5 = nn.Conv2d(256, 256, 3, 1, 1)
self.relu3_5 = nn.PReLU(256)
self.conv3_6 = nn.Conv2d(256, 256, 3, 1, 1) # =>B*256*14*12
self.relu3_6 = nn.PReLU(256)
self.conv3_7 = nn.Conv2d(256, 256, 3, 1, 1)
self.relu3_7 = nn.PReLU(256)
self.conv3_8 = nn.Conv2d(256, 256, 3, 1, 1) # =>B*256*14*12
self.relu3_8 = nn.PReLU(256)
self.conv3_9 = nn.Conv2d(256, 256, 3, 1, 1)
self.relu3_9 = nn.PReLU(256)
self.conv4_1 = nn.Conv2d(256, 512, 3, 2, 1) # =>B*512*7*6
self.relu4_1 = nn.PReLU(512)
self.conv4_2 = nn.Conv2d(512, 512, 3, 1, 1)
self.relu4_2 = nn.PReLU(512)
self.conv4_3 = nn.Conv2d(512, 512, 3, 1, 1)
self.relu4_3 = nn.PReLU(512)
self.fc5 = nn.Linear(512 * 14 * 14, 512)
# ORIGINAL for 112x96: self.fc5 = nn.Linear(512*7*6,512)
def forward(self, x):
x = self.relu1_1(self.conv1_1(x))
x = x + self.relu1_3(self.conv1_3(self.relu1_2(self.conv1_2(x))))
x = self.relu2_1(self.conv2_1(x))
x = x + self.relu2_3(self.conv2_3(self.relu2_2(self.conv2_2(x))))
x = x + self.relu2_5(self.conv2_5(self.relu2_4(self.conv2_4(x))))
x = self.relu3_1(self.conv3_1(x))
x = x + self.relu3_3(self.conv3_3(self.relu3_2(self.conv3_2(x))))
x = x + self.relu3_5(self.conv3_5(self.relu3_4(self.conv3_4(x))))
x = x + self.relu3_7(self.conv3_7(self.relu3_6(self.conv3_6(x))))
x = x + self.relu3_9(self.conv3_9(self.relu3_8(self.conv3_8(x))))
x = self.relu4_1(self.conv4_1(x))
x = x + self.relu4_3(self.conv4_3(self.relu4_2(self.conv4_2(x))))
x = x.view(x.size(0), -1)
x = self.fc5(x)
return x