1
0
Fork 0
Face identification and recognition scalable server with multiple face directories. https://github.com/ehp/faceserver
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

289 lines
11 KiB

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def memprint(a):
print(a.shape)
print(a.element_size() * a.nelement())
def calc_iou(a, b):
step = 20
IoU = torch.zeros((len(a), len(b))).cuda()
step_count = int(len(b) / step)
if len(b) % step != 0:
step_count += 1
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
for i in range(step_count):
iw = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[i * step:(i+1) * step, 2])
iw.sub_(torch.max(torch.unsqueeze(a[:, 0], 1), b[i * step:(i+1) * step, 0]))
ih = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[i * step:(i+1) * step, 3])
ih.sub_(torch.max(torch.unsqueeze(a[:, 1], 1), b[i * step:(i+1) * step, 1]))
iw.clamp_(min=0)
ih.clamp_(min=0)
iw.mul_(ih)
del ih
ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area[i * step:(i+1) * step] - iw
ua = torch.clamp(ua, min=1e-8)
iw.div_(ua)
del ua
IoU[:, i * step:(i+1) * step] = iw
return IoU
def calc_iou_vis(a, b):
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
iw = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 0])
ih = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 1])
iw = torch.clamp(iw, min=0)
ih = torch.clamp(ih, min=0)
intersection = iw * ih
IoU = intersection / area
return IoU
def IoG(box_a, box_b):
inter_xmin = torch.max(box_a[:, 0], box_b[:, 0])
inter_ymin = torch.max(box_a[:, 1], box_b[:, 1])
inter_xmax = torch.min(box_a[:, 2], box_b[:, 2])
inter_ymax = torch.min(box_a[:, 3], box_b[:, 3])
Iw = torch.clamp(inter_xmax - inter_xmin, min=0)
Ih = torch.clamp(inter_ymax - inter_ymin, min=0)
I = Iw * Ih
G = (box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])
return I / G
class FocalLoss(nn.Module):
def __init__(self, is_cuda=True):
super(FocalLoss, self).__init__()
self.is_cuda = is_cuda
def forward(self, classifications, regressions, anchors, annotations):
alpha = 0.25
gamma = 2.0
batch_size = classifications.shape[0]
classification_losses = []
regression_losses = []
anchor = anchors[0, :, :]
anchor_widths = anchor[:, 2] - anchor[:, 0]
anchor_heights = anchor[:, 3] - anchor[:, 1]
anchor_ctr_x = anchor[:, 0] + 0.5 * anchor_widths
anchor_ctr_y = anchor[:, 1] + 0.5 * anchor_heights
for j in range(batch_size):
classification = classifications[j, :, :]
regression = regressions[j, :, :]
bbox_annotation = annotations[j, :, :]
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]
if bbox_annotation.shape[0] == 0:
if self.is_cuda:
regression_losses.append(torch.tensor(0).float().cuda())
classification_losses.append(torch.tensor(0).float().cuda())
else:
regression_losses.append(torch.tensor(0).float())
classification_losses.append(torch.tensor(0).float())
continue
classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4)
IoU = calc_iou(anchor, bbox_annotation[:, :4]) # num_anchors x num_annotations
IoU_max, IoU_argmax = torch.max(IoU, dim=1) # num_anchors x 1
# compute the loss for classification
targets = torch.ones(classification.shape) * -1
if self.is_cuda:
targets = targets.cuda()
targets[torch.lt(IoU_max, 0.4), :] = 0
positive_ful = torch.ge(IoU_max, 0.5)
positive_indices = positive_ful
num_positive_anchors = positive_indices.sum()
assigned_annotations = bbox_annotation[IoU_argmax, :]
targets[positive_indices, :] = 0
targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1
try:
alpha_factor = torch.ones(targets.shape)
if self.is_cuda:
alpha_factor = alpha_factor.cuda()
alpha_factor *= alpha
except:
print(targets)
print(targets.shape)
alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor)
focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification)
focal_weight = alpha_factor * torch.pow(focal_weight, gamma)
bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification))
# cls_loss = focal_weight * torch.pow(bce, gamma)
cls_loss = focal_weight * bce
cls_zeros = torch.zeros(cls_loss.shape)
if self.is_cuda:
cls_zeros = cls_zeros.cuda()
cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, cls_zeros)
classification_losses.append(cls_loss.sum() / torch.clamp(num_positive_anchors.float(), min=1.0))
# compute the loss for regression
if positive_indices.sum() > 0:
assigned_annotations = assigned_annotations[positive_indices, :]
anchor_widths_pi = anchor_widths[positive_indices]
anchor_heights_pi = anchor_heights[positive_indices]
anchor_ctr_x_pi = anchor_ctr_x[positive_indices]
anchor_ctr_y_pi = anchor_ctr_y[positive_indices]
gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0]
gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1]
gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths
gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights
# clip widths to 1
gt_widths = torch.clamp(gt_widths, min=1)
gt_heights = torch.clamp(gt_heights, min=1)
targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi
targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi
targets_dw = torch.log(gt_widths / anchor_widths_pi)
targets_dh = torch.log(gt_heights / anchor_heights_pi)
targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh))
targets = targets.t()
if self.is_cuda:
targets = targets.cuda() / torch.Tensor([[0.1, 0.1, 0.2, 0.2]]).cuda()
else:
targets = targets / torch.Tensor([[0.1, 0.1, 0.2, 0.2]])
regression_diff = torch.abs(targets - regression[positive_indices, :])
regression_loss = torch.where(
torch.le(regression_diff, 1.0 / 9.0),
0.5 * 9.0 * torch.pow(regression_diff, 2),
regression_diff - 0.5 / 9.0
)
regression_losses.append(regression_loss.mean())
else:
if self.is_cuda:
regression_losses.append(torch.tensor(0).float().cuda())
else:
regression_losses.append(torch.tensor(0).float())
return torch.stack(classification_losses).mean(dim=0, keepdim=True), torch.stack(regression_losses) \
.mean(dim=0, keepdim=True)
class LevelAttentionLoss(nn.Module):
def __init__(self, is_cuda=True):
super(LevelAttentionLoss, self).__init__()
self.is_cuda = is_cuda
def forward(self, img_batch_shape, attention_mask, bboxs):
h, w = img_batch_shape[2], img_batch_shape[3]
mask_losses = []
batch_size = bboxs.shape[0]
for j in range(batch_size):
bbox_annotation = bboxs[j, :, :]
bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1]
if bbox_annotation.shape[0] == 0:
if self.is_cuda:
mask_losses.append(torch.tensor(0).float().cuda())
else:
mask_losses.append(torch.tensor(0).float())
continue
cond1 = torch.le(bbox_annotation[:, 0], w)
cond2 = torch.le(bbox_annotation[:, 1], h)
cond3 = torch.le(bbox_annotation[:, 2], w)
cond4 = torch.le(bbox_annotation[:, 3], h)
cond = cond1 * cond2 * cond3 * cond4
bbox_annotation = bbox_annotation[cond, :]
if bbox_annotation.shape[0] == 0:
if self.is_cuda:
mask_losses.append(torch.tensor(0).float().cuda())
else:
mask_losses.append(torch.tensor(0).float())
continue
bbox_area = (bbox_annotation[:, 2] - bbox_annotation[:, 0]) * (
bbox_annotation[:, 3] - bbox_annotation[:, 1])
mask_loss = []
for id in range(len(attention_mask)):
attention_map = attention_mask[id][j, 0, :, :]
min_area = (2 ** (id + 5)) ** 2 * 0.5
max_area = (2 ** (id + 5) * 1.58) ** 2 * 2
level_bbox_indice1 = torch.ge(bbox_area, min_area)
level_bbox_indice2 = torch.le(bbox_area, max_area)
level_bbox_indice = level_bbox_indice1 * level_bbox_indice2
level_bbox_annotation = bbox_annotation[level_bbox_indice, :].clone()
# level_bbox_annotation = bbox_annotation.clone()
attention_h, attention_w = attention_map.shape
if level_bbox_annotation.shape[0]:
level_bbox_annotation[:, 0] *= attention_w / w
level_bbox_annotation[:, 1] *= attention_h / h
level_bbox_annotation[:, 2] *= attention_w / w
level_bbox_annotation[:, 3] *= attention_h / h
mask_gt = torch.zeros(attention_map.shape)
if self.is_cuda:
mask_gt = mask_gt.cuda()
for i in range(level_bbox_annotation.shape[0]):
x1 = max(int(level_bbox_annotation[i, 0]), 0)
y1 = max(int(level_bbox_annotation[i, 1]), 0)
x2 = min(math.ceil(level_bbox_annotation[i, 2]) + 1, attention_w)
y2 = min(math.ceil(level_bbox_annotation[i, 3]) + 1, attention_h)
mask_gt[y1:y2, x1:x2] = 1
mask_gt = mask_gt[mask_gt >= 0]
mask_predict = attention_map[attention_map >= 0]
mask_loss.append(F.binary_cross_entropy(mask_predict, mask_gt))
mask_losses.append(torch.stack(mask_loss).mean())
return torch.stack(mask_losses).mean(dim=0, keepdim=True)