@ -2,7 +2,7 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 1 ,
"execution_count": 3 ,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -17,7 +17,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 2 ,
"execution_count": 4 ,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -29,7 +29,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3,
"execution_count": 33 ,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -38,7 +38,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 50 ,
"execution_count": 77 ,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
@ -54,19 +54,22 @@
" framework_version='0.90-1',\n",
" framework_version='0.90-1',\n",
" py_version='py3',\n",
" py_version='py3',\n",
" hyperparameters={\n",
" hyperparameters={\n",
" 'bonitoo_price_limit': 1000,\n",
" 'bonitoo_price_pos_abs': 1000,\n",
" 'num_round': 15,\n",
" 'bonitoo_price_neg_abs': 200,\n",
" 'bonitoo_price_pos_perc': 0.05,\n",
" 'bonitoo_price_neg_perc': 0.05,\n",
" 'num_round': 20,\n",
" 'max_depth': 15,\n",
" 'max_depth': 15,\n",
" 'eta': 0.5,\n",
" 'eta': 0.5,\n",
" 'num_class': 8,\n",
" 'num_class': 8,\n",
" 'objective': 'multi:softmax ',\n",
" 'objective': 'multi:softprob ',\n",
" 'eval_metric': 'mlogloss'\n",
" 'eval_metric': 'mlogloss'\n",
" })"
" })"
]
]
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 51 ,
"execution_count": 78 ,
"metadata": {
"metadata": {
"scrolled": true
"scrolled": true
},
},
@ -75,194 +78,158 @@
"name": "stdout",
"name": "stdout",
"output_type": "stream",
"output_type": "stream",
"text": [
"text": [
"Creating tmptao5hpuc_algo-1-x6dhm_1 ... \n",
"Creating tmpsn7kurwo_algo-1-hibva_1 ... \n",
"\u001b[1BAttaching to tmptao5hpuc_algo-1-x6dhm_12mdone\u001b[0m\n",
"\u001b[1BAttaching to tmpsn7kurwo_algo-1-hibva_12mdone\u001b[0m\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:Imported framework sagemaker_xgboost_container.training\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:Imported framework sagemaker_xgboost_container.training\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:No GPUs detected (normal if no gpus installed)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:No GPUs detected (normal if no gpus installed)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker_xgboost_container.training:Invoking user training script.\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker_xgboost_container.training:Invoking user training script.\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:Module train_model does not provide a setup.py. \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:Module train_model does not provide a setup.py. \n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Generating setup.py\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Generating setup.py\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:Generating setup.cfg\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:Generating setup.cfg\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:Generating MANIFEST.in\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:Generating MANIFEST.in\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:Installing module with the following command:\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:Installing module with the following command:\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m /usr/bin/python3 -m pip install . -r requirements.txt\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m /miniconda3/bin/python -m pip install . -r requirements.txt\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Processing /opt/ml/code\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Processing /opt/ml/code\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Requirement already satisfied: pandas in /usr/local/lib/python3.5/dist-packages (from -r requirements.txt (line 1)) (0.24.2)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Requirement already satisfied: pandas in /miniconda3/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (0.25.1)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Requirement already satisfied: numpy in /usr/local/lib/python3.5/dist-packages (from -r requirements.txt (line 2)) (1.17.2)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Requirement already satisfied: numpy in /miniconda3/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (1.17.2)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Requirement already satisfied: pytz>=2011k in /usr/local/lib/python3.5/dist-packages (from pandas->-r requirements.txt (line 1)) (2019.2)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Requirement already satisfied: python-dateutil>=2.6.1 in /miniconda3/lib/python3.7/site-packages (from pandas->-r requirements.txt (line 1)) (2.8.0)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Requirement already satisfied: python-dateutil>=2.5.0 in /usr/local/lib/python3.5/dist-packages (from pandas->-r requirements.txt (line 1)) (2.8.0)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Requirement already satisfied: pytz>=2017.2 in /miniconda3/lib/python3.7/site-packages (from pandas->-r requirements.txt (line 1)) (2019.3)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.5/dist-packages (from python-dateutil>=2.5.0->pandas->-r requirements.txt (line 1)) (1.12.0)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Requirement already satisfied: six>=1.5 in /miniconda3/lib/python3.7/site-packages (from python-dateutil>=2.6.1->pandas->-r requirements.txt (line 1)) (1.12.0)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Building wheels for collected packages: train-model\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Building wheels for collected packages: train-model\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Building wheel for train-model (setup.py) ... \u001b[?25ldone\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Building wheel for train-model (setup.py) ... \u001b[?25ldone\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \u001b[?25h Created wheel for train-model: filename=train_model-1.0.0-py2.py3-none-any.whl size=6578 sha256=f2f4bac7a2d0260f534e32b3ac0341fb291f30669499adf59ead09aa62b7ccc5\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \u001b[?25h Created wheel for train-model: filename=train_model-1.0.0-py2.py3-none-any.whl size=12596 sha256=1e1372c49fcc19ef6d93ad652d2e5c79e5855068be011b19b2273a3aff1b098f\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Stored in directory: /tmp/pip-ephem-wheel-cache-vdfjugbr/wheels/35/24/16/37574d11bf9bde50616c67372a334f94fa8356bc7164af8ca3\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Stored in directory: /tmp/pip-ephem-wheel-cache-yjganydo/wheels/35/24/16/37574d11bf9bde50616c67372a334f94fa8356bc7164af8ca3\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Successfully built train-model\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Successfully built train-model\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Installing collected packages: train-model\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Installing collected packages: train-model\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Successfully installed train-model-1.0.0\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Successfully installed train-model-1.0.0\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:No GPUs detected (normal if no gpus installed)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:No GPUs detected (normal if no gpus installed)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:sagemaker-containers:Invoking user script\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m INFO:sagemaker-containers:Invoking user script\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Training Env:\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Training Env:\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m {\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m {\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"network_interface_name\": \"eth0\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"additional_framework_parameters\": {},\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"hosts\": [\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"channel_input_dirs\": {\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"algo-1-x6dhm\"\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"training\": \"/opt/ml/input/data/training\"\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m ],\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m },\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"log_level\": 20,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"current_host\": \"algo-1-hibva\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"input_config_dir\": \"/opt/ml/input/config\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"framework_module\": \"sagemaker_xgboost_container.training:main\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"framework_module\": \"sagemaker_xgboost_container.training:main\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"hosts\": [\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"input_dir\": \"/opt/ml/input\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"algo-1-hibva\"\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"channel_input_dirs\": {\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m ],\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"training\": \"/opt/ml/input/data/training\"\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"hyperparameters\": {\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m },\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"bonitoo_price_pos_abs\": 1000,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"num_gpus\": 0,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"bonitoo_price_neg_abs\": 200,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"job_name\": \"sagemaker-xgboost-2019-10-05-20-16-58-398\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"bonitoo_price_pos_perc\": 0.05,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"output_intermediate_dir\": \"/opt/ml/output/intermediate\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"bonitoo_price_neg_perc\": 0.05,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"user_entry_point\": \"train_model.py\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"num_round\": 20,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"current_host\": \"algo-1-x6dhm\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"max_depth\": 15,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"module_dir\": \"s3://sagemaker-eu-central-1-029917565482/sagemaker-xgboost-2019-10-05-20-16-58-398/source/sourcedir.tar.gz\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"eta\": 0.5,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"master_hostname\": \"algo-1-x6dhm\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"num_class\": 8,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"module_name\": \"train_model\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"objective\": \"multi:softprob\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"resource_config\": {\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"eval_metric\": \"mlogloss\"\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"current_host\": \"algo-1-x6dhm\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m },\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"hosts\": [\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"input_config_dir\": \"/opt/ml/input/config\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"algo-1-x6dhm\"\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"input_data_config\": {\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m ]\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"training\": {\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m },\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"TrainingInputMode\": \"File\"\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"additional_framework_parameters\": {},\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m }\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"num_cpus\": 6,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m },\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"output_data_dir\": \"/opt/ml/output/data\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"input_dir\": \"/opt/ml/input\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"input_data_config\": {\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"is_master\": true,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"training\": {\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"job_name\": \"sagemaker-xgboost-2019-10-19-17-27-30-738\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"TrainingInputMode\": \"File\"\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"log_level\": 20,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m }\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"master_hostname\": \"algo-1-hibva\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m },\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"model_dir\": \"/opt/ml/model\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"is_master\": true,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"module_dir\": \"s3://sagemaker-eu-central-1-029917565482/sagemaker-xgboost-2019-10-19-17-27-30-738/source/sourcedir.tar.gz\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"hyperparameters\": {\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"module_name\": \"train_model\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"bonitoo_price_limit\": 1000,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"network_interface_name\": \"eth0\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"max_depth\": 15,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"num_cpus\": 4,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"objective\": \"multi:softmax\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"num_gpus\": 0,\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"num_class\": 8,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"output_data_dir\": \"/opt/ml/output/data\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"eta\": 0.5,\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"output_dir\": \"/opt/ml/output\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"eval_metric\": \"mlogloss\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"output_intermediate_dir\": \"/opt/ml/output/intermediate\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"num_round\": 15\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"resource_config\": {\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m },\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"current_host\": \"algo-1-hibva\",\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"output_dir\": \"/opt/ml/output\",\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"hosts\": [\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"model_dir\": \"/opt/ml/model\"\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"algo-1-hibva\"\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m }\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m ]\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m },\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Environment variables:\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \"user_entry_point\": \"train_model.py\"\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m }\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_INPUT_CONFIG_DIR=/opt/ml/input/config\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_MAX_DEPTH=15\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Environment variables:\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_LOG_LEVEL=20\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_OUTPUT_DIR=/opt/ml/output\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HOSTS=[\"algo-1-hibva\"]\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_NUM_CPUS=6\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_NETWORK_INTERFACE_NAME=eth0\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_CHANNELS=[\"training\"]\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HPS={\"bonitoo_price_neg_abs\":200,\"bonitoo_price_neg_perc\":0.05,\"bonitoo_price_pos_abs\":1000,\"bonitoo_price_pos_perc\":0.05,\"eta\":0.5,\"eval_metric\":\"mlogloss\",\"max_depth\":15,\"num_class\":8,\"num_round\":20,\"objective\":\"multi:softprob\"}\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_NUM_ROUND=15\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_USER_ENTRY_POINT=train_model.py\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_OBJECTIVE=multi:softmax\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_FRAMEWORK_PARAMS={}\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_OUTPUT_DATA_DIR=/opt/ml/output/data\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_RESOURCE_CONFIG={\"current_host\":\"algo-1-hibva\",\"hosts\":[\"algo-1-hibva\"]}\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_FRAMEWORK_MODULE=sagemaker_xgboost_container.training:main\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_INPUT_DATA_CONFIG={\"training\":{\"TrainingInputMode\":\"File\"}}\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_NETWORK_INTERFACE_NAME=eth0\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_OUTPUT_DATA_DIR=/opt/ml/output/data\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_INPUT_DATA_CONFIG={\"training\":{\"TrainingInputMode\":\"File\"}}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_CHANNELS=[\"training\"]\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_FRAMEWORK_PARAMS={}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_CURRENT_HOST=algo-1-hibva\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HPS={\"bonitoo_price_limit\":1000,\"eta\":0.5,\"eval_metric\":\"mlogloss\",\"max_depth\":15,\"num_class\":8,\"num_round\":15,\"objective\":\"multi:softmax\"}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_MODULE_NAME=train_model\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m PYTHONPATH=/usr/local/bin:/:/usr/local/lib/python3.5/dist-packages/xgboost/dmlc-core/tracker:/usr/lib/python35.zip:/usr/lib/python3.5:/usr/lib/python3.5/plat-x86_64-linux-gnu:/usr/lib/python3.5/lib-dynload:/usr/local/lib/python3.5/dist-packages:/usr/lib/python3/dist-packages\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_LOG_LEVEL=20\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_RESOURCE_CONFIG={\"current_host\":\"algo-1-x6dhm\",\"hosts\":[\"algo-1-x6dhm\"]}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_FRAMEWORK_MODULE=sagemaker_xgboost_container.training:main\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_NUM_GPUS=0\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_INPUT_DIR=/opt/ml/input\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_ETA=0.5\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_INPUT_CONFIG_DIR=/opt/ml/input/config\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_NUM_CLASS=8\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_OUTPUT_DIR=/opt/ml/output\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_MODULE_DIR=s3://sagemaker-eu-central-1-029917565482/sagemaker-xgboost-2019-10-05-20-16-58-398/source/sourcedir.tar.gz\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_NUM_CPUS=4\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_USER_ARGS=[\"--bonitoo_price_limit\",\"1000\",\"--eta\",\"0.5\",\"--eval_metric\",\"mlogloss\",\"--max_depth\",\"15\",\"--num_class\",\"8\",\"--num_round\",\"15\",\"--objective\",\"multi:softmax\"]\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_NUM_GPUS=0\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_USER_ENTRY_POINT=train_model.py\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_MODEL_DIR=/opt/ml/model\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_CURRENT_HOST=algo-1-x6dhm\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_MODULE_DIR=s3://sagemaker-eu-central-1-029917565482/sagemaker-xgboost-2019-10-19-17-27-30-738/source/sourcedir.tar.gz\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_INPUT_DIR=/opt/ml/input\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_TRAINING_ENV={\"additional_framework_parameters\":{},\"channel_input_dirs\":{\"training\":\"/opt/ml/input/data/training\"},\"current_host\":\"algo-1-hibva\",\"framework_module\":\"sagemaker_xgboost_container.training:main\",\"hosts\":[\"algo-1-hibva\"],\"hyperparameters\":{\"bonitoo_price_neg_abs\":200,\"bonitoo_price_neg_perc\":0.05,\"bonitoo_price_pos_abs\":1000,\"bonitoo_price_pos_perc\":0.05,\"eta\":0.5,\"eval_metric\":\"mlogloss\",\"max_depth\":15,\"num_class\":8,\"num_round\":20,\"objective\":\"multi:softprob\"},\"input_config_dir\":\"/opt/ml/input/config\",\"input_data_config\":{\"training\":{\"TrainingInputMode\":\"File\"}},\"input_dir\":\"/opt/ml/input\",\"is_master\":true,\"job_name\":\"sagemaker-xgboost-2019-10-19-17-27-30-738\",\"log_level\":20,\"master_hostname\":\"algo-1-hibva\",\"model_dir\":\"/opt/ml/model\",\"module_dir\":\"s3://sagemaker-eu-central-1-029917565482/sagemaker-xgboost-2019-10-19-17-27-30-738/source/sourcedir.tar.gz\",\"module_name\":\"train_model\",\"network_interface_name\":\"eth0\",\"num_cpus\":4,\"num_gpus\":0,\"output_data_dir\":\"/opt/ml/output/data\",\"output_dir\":\"/opt/ml/output\",\"output_intermediate_dir\":\"/opt/ml/output/intermediate\",\"resource_config\":{\"current_host\":\"algo-1-hibva\",\"hosts\":[\"algo-1-hibva\"]},\"user_entry_point\":\"train_model.py\"}\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_CHANNEL_TRAINING=/opt/ml/input/data/training\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_USER_ARGS=[\"--bonitoo_price_neg_abs\",\"200\",\"--bonitoo_price_neg_perc\",\"0.05\",\"--bonitoo_price_pos_abs\",\"1000\",\"--bonitoo_price_pos_perc\",\"0.05\",\"--eta\",\"0.5\",\"--eval_metric\",\"mlogloss\",\"--max_depth\",\"15\",\"--num_class\",\"8\",\"--num_round\",\"20\",\"--objective\",\"multi:softprob\"]\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_OUTPUT_INTERMEDIATE_DIR=/opt/ml/output/intermediate\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_EVAL_METRIC=mlogloss\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_CHANNEL_TRAINING=/opt/ml/input/data/training\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_MODULE_NAME=train_model\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_BONITOO_PRICE_POS_ABS=1000\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HP_BONITOO_PRICE_LIMIT=1000\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_BONITOO_PRICE_NEG_ABS=200\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_HOSTS=[\"algo-1-x6dhm\"]\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_BONITOO_PRICE_POS_PERC=0.05\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_TRAINING_ENV={\"additional_framework_parameters\":{},\"channel_input_dirs\":{\"training\":\"/opt/ml/input/data/training\"},\"current_host\":\"algo-1-x6dhm\",\"framework_module\":\"sagemaker_xgboost_container.training:main\",\"hosts\":[\"algo-1-x6dhm\"],\"hyperparameters\":{\"bonitoo_price_limit\":1000,\"eta\":0.5,\"eval_metric\":\"mlogloss\",\"max_depth\":15,\"num_class\":8,\"num_round\":15,\"objective\":\"multi:softmax\"},\"input_config_dir\":\"/opt/ml/input/config\",\"input_data_config\":{\"training\":{\"TrainingInputMode\":\"File\"}},\"input_dir\":\"/opt/ml/input\",\"is_master\":true,\"job_name\":\"sagemaker-xgboost-2019-10-05-20-16-58-398\",\"log_level\":20,\"master_hostname\":\"algo-1-x6dhm\",\"model_dir\":\"/opt/ml/model\",\"module_dir\":\"s3://sagemaker-eu-central-1-029917565482/sagemaker-xgboost-2019-10-05-20-16-58-398/source/sourcedir.tar.gz\",\"module_name\":\"train_model\",\"network_interface_name\":\"eth0\",\"num_cpus\":6,\"num_gpus\":0,\"output_data_dir\":\"/opt/ml/output/data\",\"output_dir\":\"/opt/ml/output\",\"output_intermediate_dir\":\"/opt/ml/output/intermediate\",\"resource_config\":{\"current_host\":\"algo-1-x6dhm\",\"hosts\":[\"algo-1-x6dhm\"]},\"user_entry_point\":\"train_model.py\"}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_BONITOO_PRICE_NEG_PERC=0.05\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m SM_MODEL_DIR=/opt/ml/model\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_NUM_ROUND=20\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_MAX_DEPTH=15\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Invoking script with the following command:\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_ETA=0.5\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_NUM_CLASS=8\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m /usr/bin/python3 -m train_model --bonitoo_price_limit 1000 --eta 0.5 --eval_metric mlogloss --max_depth 15 --num_class 8 --num_round 15 --objective multi:softmax\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_OBJECTIVE=multi:softprob\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m SM_HP_EVAL_METRIC=mlogloss\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n"
"\u001b[36malgo-1-hibva_1 |\u001b[0m PYTHONPATH=/miniconda3/bin:/:/usr/local/lib/python3.5/dist-packages/xgboost/dmlc-core/tracker:/miniconda3/lib/python37.zip:/miniconda3/lib/python3.7:/miniconda3/lib/python3.7/lib-dynload:/miniconda3/lib/python3.7/site-packages\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m Invoking script with the following command:\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m /miniconda3/bin/python -m train_model --bonitoo_price_neg_abs 200 --bonitoo_price_neg_perc 0.05 --bonitoo_price_pos_abs 1000 --bonitoo_price_pos_perc 0.05 --eta 0.5 --eval_metric mlogloss --max_depth 15 --num_class 8 --num_round 20 --objective multi:softprob\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m \n"
]
]
},
},
{
{
"name": "stdout",
"name": "stdout",
"output_type": "stream",
"output_type": "stream",
"text": [
"text": [
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m ERROR:sagemaker-containers:ExecuteUserScriptError:\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [0]\ttrain-mlogloss:0.848017\tvalidation-mlogloss:0.922091\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Command \"/usr/bin/python3 -m train_model --bonitoo_price_limit 1000 --eta 0.5 --eval_metric mlogloss --max_depth 15 --num_class 8 --num_round 15 --objective multi:softmax\"\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [1]\ttrain-mlogloss:0.578424\tvalidation-mlogloss:0.697124\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:hyperparameters {'num_round': 15, 'num_class': 8, 'objective': 'multi:softmax', 'eta': 0.5, 'max_depth': 15, 'eval_metric': ['mlogloss']}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [2]\ttrain-mlogloss:0.419099\tvalidation-mlogloss:0.572552\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:channels {'training': {'TrainingInputMode': 'File'}}\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [3]\ttrain-mlogloss:0.31692\tvalidation-mlogloss:0.497591\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Determined delimiter of CSV input is ','\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [4]\ttrain-mlogloss:0.247843\tvalidation-mlogloss:0.450857\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Loading csv file export.csv\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [5]\ttrain-mlogloss:0.20313\tvalidation-mlogloss:0.42247\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Preprocessing start\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [6]\ttrain-mlogloss:0.171749\tvalidation-mlogloss:0.404928\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py:543: SettingWithCopyWarning: \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [7]\ttrain-mlogloss:0.15009\tvalidation-mlogloss:0.393772\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m A value is trying to be set on a copy of a slice from a DataFrame.\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [8]\ttrain-mlogloss:0.133377\tvalidation-mlogloss:0.385623\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Try using .loc[row_indexer,col_indexer] = value instead\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [9]\ttrain-mlogloss:0.120209\tvalidation-mlogloss:0.378456\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [10]\ttrain-mlogloss:0.110155\tvalidation-mlogloss:0.374374\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [11]\ttrain-mlogloss:0.09938\tvalidation-mlogloss:0.36958\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m self.obj[item] = s\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [12]\ttrain-mlogloss:0.092882\tvalidation-mlogloss:0.366292\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m /usr/local/lib/python3.5/dist-packages/pandas/core/indexing.py:362: SettingWithCopyWarning: \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [13]\ttrain-mlogloss:0.085552\tvalidation-mlogloss:0.363469\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m A value is trying to be set on a copy of a slice from a DataFrame.\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [14]\ttrain-mlogloss:0.079976\tvalidation-mlogloss:0.363688\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Try using .loc[row_indexer,col_indexer] = value instead\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [15]\ttrain-mlogloss:0.075524\tvalidation-mlogloss:0.36325\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [16]\ttrain-mlogloss:0.069857\tvalidation-mlogloss:0.36269\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [17]\ttrain-mlogloss:0.065141\tvalidation-mlogloss:0.361854\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m self.obj[key] = _infer_fill_value(value)\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [18]\ttrain-mlogloss:0.062355\tvalidation-mlogloss:0.361638\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Computing cached times\n",
"\u001b[36malgo-1-hibva_1 |\u001b[0m [19]\ttrain-mlogloss:0.060227\tvalidation-mlogloss:0.361047\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Splitting dataset with ration 0.800000\n",
"\u001b[36mtmpsn7kurwo_algo-1-hibva_1 exited with code 0\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m /usr/local/lib/python3.5/dist-packages/xgboost/core.py:587: FutureWarning: Series.base is deprecated and will be removed in a future version\n",
"\u001b[0mAborting on container exit...\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m if getattr(data, 'base', None) is not None and \\\n",
"===== Job Complete =====\n"
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m /usr/local/lib/python3.5/dist-packages/xgboost/core.py:588: FutureWarning: Series.base is deprecated and will be removed in a future version\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m data.base is not None and isinstance(data, np.ndarray) \\\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Single node training.\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Train matrix has 25393 rows\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:Validation matrix has 6314 rows\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m INFO:root:cols: ['index', 'adults', 'children', 'infants', 'input.price', 'input.tax', 'status', 'output.price', 'output.tax', 'duration', 'client.channel_codes', 'type_codes', 'flight.inboundSegments.departure_codes', 'flight.inboundSegments.arrival_codes', 'flight.inboundSegments.origin.airportCode_codes', 'flight.inboundSegments.destination.airportCode_codes', 'flight.inboundSegments.flightNumber_codes', 'flight.inboundSegments.travelClass_codes', 'flight.inboundSegments.bookingCode_codes', 'flight.inboundSegments.availability_codes', 'flight.inboundSegments.elapsedFlyingTime_codes', 'flight.outboundSegments.departure_codes', 'flight.outboundSegments.arrival_codes', 'flight.outboundSegments.origin.airportCode_codes', 'flight.outboundSegments.destination.airportCode_codes', 'flight.outboundSegments.flightNumber_codes', 'flight.outboundSegments.travelClass_codes', 'flight.outboundSegments.bookingCode_codes', 'flight.outboundSegments.availability_codes', 'flight.outboundSegments.elapsedFlyingTime_codes', 'flight.inboundEFT_codes', 'flight.outboundEFT_codes', 'input.currency_codes', 'output.currency_codes', 'oneWay_codes']\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Traceback (most recent call last):\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m File \"/usr/lib/python3.5/runpy.py\", line 184, in _run_module_as_main\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m \"__main__\", mod_spec)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m File \"/usr/lib/python3.5/runpy.py\", line 85, in _run_code\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m exec(code, run_globals)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m File \"/opt/ml/code/train_model.py\", line 417, in <module>\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m checkpoint_config=checkpoint_config\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m File \"/opt/ml/code/train_model.py\", line 320, in sagemaker_train\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m train_job(**train_args)\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m File \"/opt/ml/code/train_model.py\", line 364, in train_job\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m raise Exception(\"cols: %s\" % str(train_dmatrix.feature_names))\n",
"\u001b[36malgo-1-x6dhm_1 |\u001b[0m Exception: cols: ['index', 'adults', 'children', 'infants', 'input.price', 'input.tax', 'status', 'output.price', 'output.tax', 'duration', 'client.channel_codes', 'type_codes', 'flight.inboundSegments.departure_codes', 'flight.inboundSegments.arrival_codes', 'flight.inboundSegments.origin.airportCode_codes', 'flight.inboundSegments.destination.airportCode_codes', 'flight.inboundSegments.flightNumber_codes', 'flight.inboundSegments.travelClass_codes', 'flight.inboundSegments.bookingCode_codes', 'flight.inboundSegments.availability_codes', 'flight.inboundSegments.elapsedFlyingTime_codes', 'flight.outboundSegments.departure_codes', 'flight.outboundSegments.arrival_codes', 'flight.outboundSegments.origin.airportCode_codes', 'flight.outboundSegments.destination.airportCode_codes', 'flight.outboundSegments.flightNumber_codes', 'flight.outboundSegments.travelClass_codes', 'flight.outboundSegments.bookingCode_codes', 'flight.outboundSegments.availability_codes', 'flight.outboundSegments.elapsedFlyingTime_codes', 'flight.inboundEFT_codes', 'flight.outboundEFT_codes', 'input.currency_codes', 'output.currency_codes', 'oneWay_codes']\n",
"\u001b[36mtmptao5hpuc_algo-1-x6dhm_1 exited with code 1\n",
"\u001b[0mAborting on container exit...\n"
]
},
{
"ename": "RuntimeError",
"evalue": "Failed to run: ['docker-compose', '-f', '/tmp/tmptao5hpuc/docker-compose.yaml', 'up', '--build', '--abort-on-container-exit'], Process exited with code: 1",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/local/image.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, input_data_config, output_data_config, hyperparameters, job_name)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 148\u001b[0;31m \u001b[0m_stream_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprocess\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 149\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mRuntimeError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/local/image.py\u001b[0m in \u001b[0;36m_stream_output\u001b[0;34m(process)\u001b[0m\n\u001b[1;32m 656\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mexit_code\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 657\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Process exited with code: %s\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mexit_code\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 658\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mRuntimeError\u001b[0m: Process exited with code: 1",
"\nDuring handling of the above exception, another exception occurred:\n",
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-51-ffc1ca8d95fd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mestimator\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m{\u001b[0m\u001b[0;34m'training'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mtrain_input\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m#estimator = sklearn.attach('sagemaker-scikit-learn-2019-01-25-16-34-38-829')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/estimator.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, inputs, wait, logs, job_name)\u001b[0m\n\u001b[1;32m 337\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_prepare_for_training\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 338\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 339\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlatest_training_job\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_TrainingJob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart_new\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 340\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwait\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 341\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlatest_training_job\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlogs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/estimator.py\u001b[0m in \u001b[0;36mstart_new\u001b[0;34m(cls, estimator, inputs)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_add_spot_checkpoint_args\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlocal_mode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtrain_args\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m \u001b[0mestimator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msagemaker_session\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mtrain_args\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcls\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mestimator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msagemaker_session\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_current_job_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/session.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, input_mode, input_config, role, job_name, output_config, resource_config, vpc_config, hyperparameters, stop_condition, tags, metric_definitions, enable_network_isolation, image, algorithm_arn, encrypt_inter_container_traffic, train_use_spot_instances, checkpoint_s3_uri, checkpoint_local_path)\u001b[0m\n\u001b[1;32m 390\u001b[0m \u001b[0mLOGGER\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Creating training-job with name: %s\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 391\u001b[0m \u001b[0mLOGGER\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdebug\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"train request: %s\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdumps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_request\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 392\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msagemaker_client\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_training_job\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mtrain_request\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 393\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 394\u001b[0m def compile_model(\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/local/local_session.py\u001b[0m in \u001b[0;36mcreate_training_job\u001b[0;34m(self, TrainingJobName, AlgorithmSpecification, OutputDataConfig, ResourceConfig, InputDataConfig, **kwargs)\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[0mtraining_job\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_LocalTrainingJob\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontainer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0mhyperparameters\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"HyperParameters\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m\"HyperParameters\"\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 101\u001b[0;31m \u001b[0mtraining_job\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mInputDataConfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mOutputDataConfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhyperparameters\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTrainingJobName\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 102\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 103\u001b[0m \u001b[0mLocalSagemakerClient\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_training_jobs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mTrainingJobName\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtraining_job\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/local/entities.py\u001b[0m in \u001b[0;36mstart\u001b[0;34m(self, input_data_config, output_data_config, hyperparameters, job_name)\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 88\u001b[0m self.model_artifacts = self.container.train(\n\u001b[0;32m---> 89\u001b[0;31m \u001b[0minput_data_config\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_data_config\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhyperparameters\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_name\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 90\u001b[0m )\n\u001b[1;32m 91\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mend_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/aprar/bonitoo/.venv/lib/python3.7/site-packages/sagemaker/local/image.py\u001b[0m in \u001b[0;36mtrain\u001b[0;34m(self, input_data_config, output_data_config, hyperparameters, job_name)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[0;31m# which contains the exit code and append the command line to it.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Failed to run: %s, %s\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mcompose_command\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 153\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 154\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[0martifacts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve_artifacts\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompose_data\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_data_config\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mRuntimeError\u001b[0m: Failed to run: ['docker-compose', '-f', '/tmp/tmptao5hpuc/docker-compose.yaml', 'up', '--build', '--abort-on-container-exit'], Process exited with code: 1"
]
]
}
}
],
],